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Summary
Background Inter-individual variability during sepsis limits appropriate triage of patients. Identifying, at first clini-
cal presentation, gene expression signatures that predict subsequent severity will allow clinicians to identify the
most at-risk groups of patients and enable appropriate antibiotic use.

Methods Blood RNA-Seq and clinical data were collected from 348 patients in four emergency rooms (ER) and one
intensive-care-unit (ICU), and 44 healthy controls. Gene expression profiles were analyzed using machine learning
and data mining to identify clinically relevant gene signatures reflecting disease severity, organ dysfunction, mortal-
ity, and specific endotypes/mechanisms.

Findings Gene expression signatures were obtained that predicted severity/organ dysfunction and mortality in both
ER and ICU patients with accuracy/AUC of 77�80%. Network analysis revealed these signatures formed a coherent
biological program, with specific but overlapping mechanisms/pathways. Given the heterogeneity of sepsis, we
asked if patients could be assorted into discrete groups with distinct mechanisms (endotypes) and varying severity.
Patients with early sepsis could be stratified into five distinct and novel mechanistic endotypes, named Neutrophilic-
Suppressive/NPS, Inflammatory/INF, Innate-Host-Defense/IHD, Interferon/IFN, and Adaptive/ADA, each based
on »200 unique gene expression differences, and distinct pathways/mechanisms (e.g., IL6/STAT3 in NPS). Endo-
types had varying overall severity with two severe (NPS/INF) and one relatively benign (ADA) groupings, consistent
with reanalysis of previous endotype studies. A 40 gene-classification tool (accuracy=96%) and several gene-pairs
(accuracy=89�97%) accurately predicted endotype status in both ER and ICU validation cohorts.

Interpretation The severity and endotype signatures indicate that distinct immune signatures precede the onset of
severe sepsis and lethality, providing a method to triage early sepsis patients.

Copyright � 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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One Sentence Summary: Using machine learning to predict cross-cutting gene expression markers of sepsis severity/lethality, and

to triage hospital patients with early sepsis into five endotypes, two of which were strongly associated with severity.
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Research in context

Evidence before this study

Sepsis is a common, life-threatening, and very heteroge-
neous condition; this has thwarted attempts at identifi-
cation of high-risk patients, accurate early diagnosis,
and development of disease-specific treatments. For
every hour’s delay in application of appropriate treat-
ment (typically potent antibiotic regimens) there is a
76% increased risk of death. The issue of patient hetero-
geneity has been recently captured by separating
patients into endotypes, where each endotype is sub-
type (phenotypic cluster) of sepsis, that is likely
defined by a distinct functional or pathobiological
mechanism. To identify studies in which severity had
been analyzed or for which patient heterogeneity had
been considered, in PubMed, we used the search terms
(“sepsis” OR “septic shock” OR “severe sepsis”) AND
(“gene expression profiling” OR “microarray” OR “RNA-
Seq”) AND (“endotype” OR “cluster” OR “subgroup”); 36
studies described the use of gene expression profiling
to examine the underlying molecular responses in infec-
tion and sepsis. We found that attempts to classify
patients according to severity had to date been quite
unsuccessful, in part because the rather inaccurate
method of microarrays had been used to classify
patients; critically only one study addressed pre-sepsis
diagnosis patients from the ER. Thus, ten ICU studies
used peripheral blood, microarray data and statistical
methods to identify (usually two) endotypes in critically
ill ICU patients with sepsis. Patients who were severely
ill or died were generally scattered across all endotypes.
Overall, these studies indicated that patients exhibiting
reprogrammed or depressed immune systems generally
experience higher clinical severity and increased mortal-
ity. It is expected this body of research will only grow in
light of the global Covid-19 pandemic, since patients
with severe SARS-CoV-2 infections and all-cause sepsis
display overlapping molecular characteristics.

Added value of this study

Early prediction of severity and more accurate charac-
terization of endotypes would allow physicians to apply,
in a timely manner, the appropriate and most potent
treatments in the critical early phase of sepsis. We inves-
tigated, prior to any formal diagnosis, 266 prospective
sepsis patients in the ER from 4 continents using the
highly accurate transcriptomics method, RNA-Seq.
When combined with another cohort of 82 early ICU
patients, we were able to identify small gene expression
signatures that accurately predicted disease severity
and mortality and were applicable to both early ER and
early ICU patients. These signatures revealed related
but distinct underlying mechanisms. To analyze the role
of patient heterogeneity, we utilized the whole-blood
gene expression data from our 266 ER patients, and
machine learning test/validation procedures, to predict

five distinct endotypes that captured the early sepsis
response, within two hours of ER admission. These
endotypes were defined by unique sets of »200 genes
each, and distinct biological mechanisms and clinical
outcomes, with two of the five endotypes associated
with greater severity and mortality and one demonstrat-
ing much lower severity. We developed a classification
model to accurately predict endotype status in two
independent validation cohorts and two external data-
sets (from prior endotype studies), based on quantifica-
tion of expression of 40 genes in whole blood; gene
pairs from this classification subset were also able to
accurately identify these endotypes. The endotypes
were stable since 4/5 were also evident in ICU patients
from our own and the two external datasets. Thus, early
gene signatures of severity and endotypes can be iden-
tified from blood samples taken in the ER, and are rele-
vant to patients regardless of disease stage, infection
origin or location.

Implications of all the available evidence

This study demonstrates that the mechanisms relevant
to the development of life-threatening sepsis can be
observed as early as first entry into the ER, prior to any
formal diagnosis. These include both discrete cross-cut-
ting severity signatures and distinct endotypes associ-
ated with the propensity to develop severe disease. This
considerably advances previous findings, indicating
that sepsis patients display a high degree of heteroge-
neity, with a less certain relationship between severity,
lethality and endotype. Indeed, reanalysis of these data
demonstrated that patients previously proposed to fit
into 2 or 4 endotypes could be reclassified into our 5
endotypes with similar severity profiles. This has impor-
tant implications for sepsis patients and caregivers glob-
ally and suggests that the development of diagnostics
and targeted therapeutics should focus on patients
early in the sepsis disease course.
Introduction
Sepsis is defined by a dysfunctional, life-threatening 
response to infection leading to (multi-)organ dysfunc-
tion and failure. The global burden is high, with an esti-
mated 48.9 million cases of sepsis worldwide in 2017, 
leading to 11 million deaths, nearly 1 in 5 global deaths.1 

Inter-individual clinical variability and lack of predictive 
and prognostic markers hinders efficient triage and 
expedient initiation of definitive therapy2,3 Further-
more, treatment delays impact strongly on early and 
late morbidity/mortality,4 while inappropriate antibiotic 
use has been linked to emergent resistance.5

Sepsis patients exhibit a very broad spectrum of dis-
ease manifestation, ranging from relatively mild to requir-
ing ventilation, with varied organ dysfunction, septic
www.thelancet.com Vol xx Month xx, 2021
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shock, and death. Accordingly, given the clinical
variability among sepsis patients there is only moderate
consensus on how to accurately define the syndrome,
especially at first clinical presentation. Blood transcrip-
tomics has proven useful in obtaining systems-level
descriptions of the responses dysregulated during sepsis.
Gene expression signatures can to some extent discrimi-
nate between sepsis/acute infection and systemic inflam-
matory response syndrome (SIRS) (or “non-sepsis”) in
the intensive care unit (ICU).6�8 However, these
approaches typically lack sensitivity due to heterogeneity
arising from individual genetic variation, demographic
factors, the infection source and agent, therapeutic inter-
vention, comorbidities including pre-existing immune-
suppressive conditions, epigenetics, etc.9�11

These factors have led to sepsis being reframed as a
syndrome comprised of several subgroups termed
endotypes, which represent distinct biologically driven
and clinically relevant groups of patients with varied
severity and clinical outcomes9,12 Specifically, endo-
types can provide more sensitive markers enabling pre-
diction of sepsis severity, risk-stratification, and
opportunities for individualized therapies. Previous
research has concluded that 2�4 subgroups/endotypes
exist in seriously ill sepsis patients in the ICU, that is
after sepsis has been confirmed.12�15 Results to date,
largely driven by analysis of patient metadata and
microarray transcriptomic studies, have indicated a sin-
gle ICU specific endotype with higher severity scores,
but patients with severe sepsis/lethality were scattered
across endotypes. Although severe sepsis is no longer
recognized as such in the Sepsis-3 definitions, we use
it here to discriminate between severely ill patients and
those with relatively mild disease. Moreover, the clini-
cal utility of gene expression signatures identified in
ICU patients are arguably less useful since patients
have already deteriorated3�5 and require intensive care
and antibiotics. If we were able to extend these analy-
ses to identify severity markers and/or endotype status
within the first hours of ER admission, this would
enable more timely, aggressive and/or immunomodu-
latory interventions to prevent the further progression
to more severe sepsis, while sparing broad-spectrum
antibiotics when not needed.

Our objective was to identify novel transcriptional
diagnostic and risk stratification markers at first presen-
tation to the ER and ICU, when patients show less
definitive/non-specific clinical traits, and sepsis diagno-
sis has not yet been established. We recruited a global
cohort of patients from the Netherlands, Colombia,
Canada, and Australia and used whole blood RNA-Seq
and machine learning to develop gene expression signa-
tures reflecting sepsis severity, cellular reprogramming,
and mortality, as well as predicting 5 endotypes differ-
ing in overall severity. We exploited protein-protein
interaction (PPI) networks to define mechanisms that
collectively mediate these groupings. Severity markers
www.thelancet.com Vol xx Month xx, 2021
and endotypes were further shown to be relevant to an 
independent prospective cohort of critically ill, tertiary-
care ICU patients indicating that early gene expression 
endotypes were stable and associated with sepsis sever-
ity and mortality regardless of progression.
Methods

Study design and clinical data collection
In this study, we sought to characterize early molecular 
responses which dictate progression to severe sepsis. 
Accordingly, we enrolled diverse cohorts of adult 
patients (>18 years of age) with suspected sepsis from 
five hospital cohorts. ER patients were recruited if sepsis 
was suspected within 2 h of ER admission. This was 
based on the attending physician’s informed opinion 
and required patients showing at least two SIRS/Sepsis-
1 criteria16 and suspected infection. In some cases, at 
ER admission patients met the Sepsis-3 criteria3 for sep-
sis (SOFA scores >2), but since infection was not con-
firmed these patients were considered suspected sepsis. 
ICU patients with suspected pulmonary sepsis were 
enrolled prospectively in the COLOBILI study and gen-
erally recruited within of the first day of ICU admission. 
Patients were excluded if death was impending (within 
12 h), if blood collection was unattainable, or consent 
was withheld. Enrollment included a full spectrum of 
individuals who might be suspected of being pre-septic. 
While we were aware of the possibility that early therapy 
might strongly influence outcomes for such patients, we 
made no attempt to correct for treatments that might 
influence outcome measures, since we were interested 
in the underlying mechanisms. To the best our knowl-
edge, patients were not using any anti-inflammatories 
or steroids on the first day of ER and ICU admission. In 
total, we collected ER and ICU patients from five 
cohorts (Figure S1 and Table S3). There were 75 samples 
recruited from Colombia, 105 samples from the Nether-
lands, 13 from Vancouver (sample collection limited by 
the COVID-19 pandemic), 82 from Toronto, and 88 
from Sydney. To enable retrospective association with 
gene expression data, various clinical and demographic 
metadata were collected at triage and within the 72 h fol-
lowing ER and ICU admission (Table 1). In addition, 
healthy control samples from either presurgical controls 
or healthy volunteers were obtained from Sydney, Van-
couver, and Neiva (n = 44; average age 50 § 2.4).
Ethics
All patients were enrolled under local ethical board 
approval. Informed written consent was obtained upon 
enrollment from the patient or their legal representa-
tive. The Clinical Research Ethics Board of the Univer-
sity of British Columbia (UBC) provided ethics 
approval for all sequencing and bioinformatics studies,
3



Parameter Demographic and Clinical Data

ER Patients (N = 182 in Discovery group; 84 in Validation cohort) ICU Patients (N = 82)

Age 56 § 1¢3 (266) 61¢7 § 17 (82)

Sex, Female 45.5% (121/266) 30.5% (25/82)

Location(s) Endotype Discovery: Groningen, the

Netherlands (39%); Neiva, Colombia (25%); Vancouver,

Canada (4%); Endotype Validation: Sydney, Australia (32%)

Toronto, Canada (100%)

Duration of illness before ER/ICU arrival 6.1 § 0¢87 (266) 6.1 § 0¢85 (62)

ER qSOFA 1.0 § 0¢05 (266) Not applicable

ER/ICU 24H SOFA Score 2¢0§ 0¢12 (266) 7.2 § 0¢55 (79)

Hospital/ICU stay (days) 7.5 § 0¢54 (266) 12.0 § 1¢0 (82)

Blood Culture Result 19.2% (50/260) 12.2% (10/82)

ICU Admission 10.2% (27/266) 9.8% (80/82)*

Mortality (In hospital) 12.1% (32/265) 24.4% (20/82)

SARS-CoV-2 PCR Positive None 32.9% (27/82)#

Table 1: Sepsis severity and outcomes of patients included in the discovery and validation cohorts. The mean value § standard error is
presented for numerical variables (total observations in brackets). Categorical variables are presented as % positive observations
(relative to total observations). ER = value in the Emergency Room at first clinical presentation.
* 2 patients collected from ward
# Based on PCR for SARS-CoV-2 RNA of nasopharyngeal and/or endotracheal tube aspirates. All patients had evident early sepsis.
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carried out in a manner blinded to patient identity
(approval number H17-01208).
Blood collection and RNA-Seq
Three millilitres of blood was collected into PAXgene
Blood RNA tubes (BD Biosciences) during usual blood
collection to ensure intracellular RNA stabilization.
RNA isolation, sample preparation, RNA-Seq and down-
stream processing was performed using well-estab-
lished standard operating procedures.17 Total RNA was
extracted using PAXgene Blood RNA Kit (Qiagen; Ger-
mantown, MD, USA). Quantification and quality meas-
ures of total RNA were obtained using an Agilent 2100
Bioanalyzer (Agilent; Santa Clara, USA). Poly-adeny-
lated RNA was captured using NEBNext Poly(A) mRNA
Magnetic Isolation Module (NEB; Ipswich, USA).
cDNA libraries were prepared using the KAPA Total
RNA HyperPrep Kit (Roche; Basel, Switzerland). RNA-
Seq was then performed on Illumina Hi-Seq instru-
ment using single read runs of 150 base-pair long
sequence reads (excluding adapter/index sequences).
RNA-Seq processing and count matrix generation are
described in the Supplemental Materials. Of the 363
patients recruited, 348 showed RINs > 65 and had
sequencing libraries greater than 1 million (Australia/
84, Colombia/67, the Netherlands/104, Vancouver/11,
Toronto/82). Severity analysis used all patients, while
endotype classification utilized 182 patients in the ER
discovery set, 84 patients in the Sydney ER validation
cohort and 82 patients in the Toronto ICU validation
cohort (Figure S1). Raw sequencing data are available at
NCBI GEO (Accession Number GSE185263).
Statistics
Mechanisms associated with severity were identified
from all patients (ER+ICU) using differential expression
(DE) analysis with DESeq2,18 followed by over-represen-
tation/enrichment of up- and down-regulated genes
using the Reactome19 pathway and MSigDB Hall-
mark20 databases. Patient severity was assessed using
Sequential Organ Failure Assessment (SOFA) scores,3 a
proxy for organ dysfunction, sepsis, and mortality risk.
We developed signatures for markers of severity groups
and mortality by using logistic regression with least
absolute shrinkage and selection operator (LASSO).21

The severity signatures were obtained by comparing
patients with extreme phenotypes (i.e., High vs Low
severity groups), whereby input to the LASSO regres-
sion model included up and down-regulated genes from
the lists of DE genes between these groups. We hypoth-
esized that the extreme severity group phenotypes
would yield the most robust markers of severity. The
LASSO-selected severity signature was then assessed
for predictive power by comparing the
High + Intermediate vs Low severity groups. The mor-
tality signature was obtained similarly, with input to the
LASSO model being DE genes between Dead vs Surviv-
ing patients. We also validated the use of a previously
published cellular-reprogramming (CR)22,23 signature
of immune suppression using the random forest algo-
rithm.

An unsupervised machine-learning method, k-
medoids consensus clustering, was applied to detect
endotypes with similar gene expression profiles. In pre-
liminary studies, we attempted various clustering meth-
ods including k-medoids clustering, Density-Based
www.thelancet.com Vol xx Month xx, 2021
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Spatial Clustering of Application with Noise (DBSCAN), 
and K-means clustering and employed different dis-
tance metrics. All clustering methods largely yielded the 
same results, except for approximately 7% of patients 
who clustered differently between methods. We chose 
to cluster gene expression profiles with k-medoids clus-
tering (with Manhattan distance) since this method is 
robust to outlier samples and features that can arise 
from high throughput sequencing.24 The appropriate 
number of clusters/endotypes (k = 5) was determined by 
applying cluster validity metrics (Table S4; Figure S2). 
To understand the mechanistic underpinnings of endo-
types, we extracted DE genes and associated pathways, 
by comparison to healthy controls and to each other. 
Cell proportions were estimated using CIBERSORT,25 

and correlated to measured cell counts where available. 
Clinical parameters were compared between endotypes 
using Kruskal-Wallis and Chi-Squared tests to compare 
numerical and categorical variables, respectively. Sur-
vival analysis was performed using Kaplan Meir estima-
tion with log-rank tests. Five unique endotype 
signatures were obtained by identifying the 200 most-
upregulated DE genes that were unique to each endo-
type (comparing each endotype to all others). These sig-
natures enabled a minimized 40-gene endotype 
classification/prediction tool using multinomial regres-
sion model with LASSO regularization. To further 
reduce the genes required for endotype classification, 
we determined pairs of genes from the 40-gene multi-
nomial model that could reliably stratify patients into 
endotypes (Supplemental Methods). The multinomial 
model was then used to assign endotype status among 
patients of the validation cohorts.
Role of funders
The funders (Canadian Institutes for Health Research; 
FDN-154287) had no role in the study’s design, data col-
lection and analysis, interpretation, or writing of the 
manuscript.
Results

Severity, mortality, and cellular reprogramming display 
overlapping mechanisms
To identify markers of sepsis severity in sepsis patients 
at first clinical presentation, a multi-country whole-
blood RNA-Seq study was performed. ER patients (266; 
Table 1) from 4 countries/continents and early ICU 
patients (82) demonstrated the strong within-cohort het-
erogeneity, for which sepsis as a syndrome is well 
known.9 To capture the full range of severity, all 348 ER 
and ICU patients were included in the analysis, captur-
ing the full spectrum of early septic individuals. For ER 
patients, the average age was 56 § 1.3 years (range
www.thelancet.com Vol xx Month xx, 2021
19�96) and average 24 h post admission SOFA scores
were 2¢0 § 0¢12 (range 0�10), with an average hospital
stay of 7¢5 § 0¢54 days (range 1�65). In-hospital mortal-
ity was moderate at 12¢1%, cf. the global mortality of
23% in sepsis,1 consistent with the concept23 that
around 50% of patients with early suspected sepsis sub-
sequently develop more severe sepsis. In contrast, the
ICU cohort displayed much higher severity; the average
age was 61¢7 § 1¢7, the average SOFA score was
7¢2 § 0¢55 (24H post- admission), and the rates of mor-
tality were much higher at 24¢4%.

We explored whether there were gene expression
markers of severity and mortality when considering
patients who progressed to High (24 h SOFA scores
�5), Intermediate (SOFA �2; <5), or Low (SOFA <2)
severity. We also explored potential markers of in-hospi-
tal mortality (Figure 1). Comparing High vs. Intermedi-
ate and High vs Low severity groups (representing the
extreme phenotypes) yielded several upregulated
immune-related processes (Figure 1a), particularly neu-
trophil degranulation, the most enriched pathway when
comparing severity groups. This indicated sepsis sever-
ity, at least in the early stages, is associated with neutro-
phil activity. When comparing patients who died in the
hospital to those that survived, the interferon-g
response was notably downregulated. This was consis-
tent with the concept that Interferon-g is a key mediator
of post-sepsis immunosuppression while Interferon-g
therapy can improve patient prognosis.26,27

Using LASSO regression, two mechanistic signa-
tures were derived (Table S1) comprised of DE genes
from the High vs. Low and Dead vs. Surviving compari-
sons and showed good AUCs (equated to accuracy) of
70�80% (Table 3), and significant statistical enrich-
ment in ER patients (Table S2). A distinct CR signature
of severe sepsis, and an 8-gene sub-signature, had simi-
lar cross validation AUCs/Accuracy of 75�77%, and
similar levels of sensitivity and specificity (Table 3).
Importantly, a recent meta-analysis of qSOFA scores,
which is measured at ER admission, in fact showed
quite poor ability to predict severity/mortality.
Specifically, qSOFA scores show sensitivity of »42%,28

which our signatures substantially outperformed. To
understand the mechanisms unifying these signatures,
we created function-based protein-protein interaction
(PPI) networks. Interestingly, the severity, CR and mor-
tality signatures could be integrated into a single coher-
ent network (Figure 1b). This indicated that the
mechanisms related to each were discrete but biologi-
cally related since well-connected networks reflect com-
plementary and/or inter-connected gene expression
responses and pathways. Network hubs (highly inter-
connected nodes) included ELANE and CYP19A1 (sever-
ity signature); PLAUR, S100A9, SERPINA1, and HK2
(CR signature); HIF1A, PLSCR1, and IFIT1 (mortality
5



Figure 1. Biological characterization of SOFA-based severity groups and mortality in all ER and ICU patients. (a) Functional 
enrichment of up and downregulated DE genes (displaying � §1.25-fold change; adjusted p � 0¢05) comparing severity and mortal-
ity. SOFA scores were dichotomized into High (n = 82), Intermediate (n = 125), and Low (n = 138) groups. Functional characterization 
of DE genes was performed using an overrepresentation analysis of Reactome pathways or MSigDB sets (adjusted p-value�0¢05). (b) 
A combined PPI network (drawn using NetworkAnalyst45) of the severity (52 genes/proteins), mortality (38 genes/proteins), and cel-
lular reprogramming (31 genes) biological signatures. PPI represent function-based interactions in cells. Thus the formation of a 
cohesive network indicated that the products of the genes involved are functionally related and collectively regulate or play key 
roles in one or more related biological mechanisms. The nodes (coloured circles) represent the signature genes and the edges (lines 
connecting the nodes) represent a curated (i.e. known) interaction between the genes (or rather their protein equivalents). The size 
of the node represents its connectivity (i.e. how many other proteins it interconnects with), whereby highly connected genes (or 
hubs) are larger. The mortality signature shared no genes in common with the severity signature but shared one gene with the CR 
signature (DHRS9). The severity signature shared three genes in common with the CR signature (PSTPIP2, RAB13, S100A12).
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signature). Furthermore, STAT1/3, ELAV1, SP1, IL8/33,
TLR4, and JUN were first-order interactors that con-
nected together the signature genes nodes.
Stratification of ER patients with suspicion of sepsis
into five mechanistic endotypes
Comparing severity groups indicated the relationship
between the clinically defined groups and gene expres-
sion was good but not excellent which we ascribed to
patient/sepsis heterogeneity. Previous studies demon-
strated an uncertain relationship between severity and
endotype.13-15 Here we characterized sepsis endotypes
using our more accurate RNA-Seq dataset to observe if
this was an additional factor determining severity. In
particular we identified endotypes in suspected sepsis
patients at first clinical presentation, where timely
immunomodulatory interventions would be most effec-
tive in preventing further progression.

Based on differential gene expression profiles, five
endotypes were identified in a discovery cohort (n = 182)
of ER patients from the Netherlands, Colombia, and
Canada, and subsequently validated in a validation
cohort (n = 84) from Australia (Table S3, Figs. S2,S3).
Based on differentially expressed pathways/mecha-
nisms, endotypes were denoted as Neutrophilic-Sup-
pressive (NPS), Inflammatory (INF), Innate Host
Defence (IHD), Interferon (IFN), and Adaptive (ADA)
with diverse clinical parameters. Five distinct signatures
of 182�200 upregulated genes (Table S6), reflecting
coherent mechanisms, discriminated each endotype
from all others. This enabled, using LASSO multino-
mial regression, the generation of a 40-gene classifica-
tion gene-set for endotype prediction, with a very high
AUC/Accuracy of 96% (Table 3). Subsequently we ana-
lyzed all 266 ER patients to improve the robustness of
mechanistic and phenotypic conclusions (Figure 2).
Five early sepsis endotypes were mechanistically
diverse and varied in prognoses
The spectrum of altered biological mechanisms for each
endotype in the ER patients was characterized by com-
paring the unique »200-gene signatures for each endo-
type relative to a set of 39 healthy controls (Figure 2a).
These endotype signatures revealed distinct signalling
pathways and processes mediating each endotype. The
NPS endotype involved upregulated genes in several
innate immune system pathways, particularly neutro-
phil degranulation, responses to stress, NLR pathways,
and reactive oxygen species production, and downregu-
lation of adaptive immune and interferon signalling
pathways (Figures. 2a, S5). The INF endotype was most
similar to the NPS endotype but demonstrated strong
differences including increased inflammatory
responses, NFkB activation, and activation of TCR/BCR
signaling (Figures. 2a, 3). Analysis of cell types by esti-
mates using CIBERSORT and, where possible (229
www.thelancet.com Vol xx Month xx, 2021
patients) actual measurements, indicated that the NPS/
INF endotypes had higher neutrophil proportions 
(Figure S5d). Except for the ADA endotype, proportions 
of five other immune cell subsets demonstrated minor 
(�20%) changes between endotypes and healthy con-
trols.

The IFN, ADA and IHD endotypes showed overlap-
ping gene expression, based on principal component 
analysis, but also substantial differences (Figures. 2, 
S5). The IFN endotype showed high expression of inter-
feron-a, -b, and -g signaling processes. The ADA endo-
type was notable for Rho GTPases, mTORC1 signaling 
and glycolysis, and upregulation of adaptive immune 
pathways, and more abundant lymphocytes (Figs. S3, 
S5). The IHD endotype showed the fewest DE genes 
reflecting innate host defences, including moderate 
upregulation of interleukin signalling.

Importantly, the endotypes were linked to substan-
tial differences in clinical parameters and severity out-
comes (Table 2, Figure 2b, c). On average, the NPS and 
INF endotypes were clearly associated with more severe 
disease based on organ failure probability (log-rank 
p = 0.014), 24 h SOFA-scores (Kruskal-Wallis 
p = 0¢0022), 72 h SOFA-scores (Kruskal-Wallis 
p = 0¢038), hospital stay days (Kruskal-Wallis 
p = 0¢00019), requirement for O2 therapy (Chi-Squared 
p = 0¢019), and assessment of a positive blood culture 
(Chi-squared p = 0¢001). However individual patients in 
each endotype had broadly different outcomes that 
might be explained in part by the timeliness of appropri-
ate treatment and other unknown variables. The NPS 
endotype displayed the longest hospital stays, consistent 
with early evidence of CR and immunosuppression that 
might hinder rapid resolution.

The 40-gene classification set derived from the 
unique gene-sets for each endotype revealed distinct 
expression patterns for each endotype in ER patients 
(Figure 2d), with endotype-specific genes generally 
downregulated in the other endotypes. These 40 genes 
facilitated the derivation of 148 gene pairs in the ER dis-
covery set that were able to separately predict each of 
the 5 endotypes with AUCs/Accuracy as high as 
89�97% (Tables 3, S7), indicating high diagnostic 
potential.
The NPS endotype captured the most severe and 
immunosuppressed patients
Poorer prognosis, elevated Neutrophil proportions, and 
down-regulation of certain inflammatory markers and 
adaptive signaling pathways indicated that the NPS 
endotype tended to feature nascent immunosuppres-
sion. Downregulated pathways included downregulated 
CD28 co-stimulation, CD3/TCR phosphorylation, 
immunoregulatory lymphoid and non-lymphoid cell 
interactions, PD1 signalling, interferon-g signalling and 
Zap-70 translocation to immunological synapses
7



Figure 2. Biological and clinical characterization of Neutrophilic-Suppressive (NPS), Inflammatory (INF), Innate-Host-
Defence (IHD), Interferon (IFN), and Adaptive ADA) endotypes and their respective signatures. (a) Functional enrichment of up 
and downregulated DE genes (displaying � §1.5-fold change; adjusted p � 0.05) comparing each endotype to healthy controls (n = 
39). (b) Selected clinical symptomology and outcomes of endotypes and their distributions. Dunn’s Posthoc test indicated by: # p < 
0¢05 cf. IHD; * p < 0¢05 cf. IFN; + p < 0¢05 cf. ADA; ^ p < 0¢05 cf. INF. (c) Kaplan-Meier curves describing 28-day organ failure free 
days. Organ failure free days was compared between endotypes by combining the low prognosis endotypes (NPS and INF) and the 
fair prognosis endotypes (IFN, IHD, and ADA). The combined endotypes shared many molecular and clinical features, so this scheme 
made biological sense and increased statistical power to detect a significant difference. (d) Heat map showing the expres-sion of 40 
classification genes (used to drive the endotype classification model) in all patients (arrayed left to right). NB this signature delivered 
excellent performance in the discovery group (AUC/accuracy: 96%; Sensitivity: 81%; Specificity: 95%).
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(Figure 3a). Conversely the other severe endotype INF
led to upregulation of multiple inflammatory pathways.
These differences could be explained in part by
differential expression of elements of signalling path-
ways such as IL2/STAT5, IL-6/JAK/STAT3, Interferon,
and TNF-a/NFkB (Figure 3b) For example, based on in
www.thelancet.com Vol xx Month xx, 2021



 

Parameter Mechanistic Endotypes

NPS (N = 83) INF (N = 45) IHD (N = 55) IFN (N = 58) ADA (N = 25) P Val

Age (years) 59.4 § 2¢17 (83) 58.3 § 2¢59 (45) 62.7 § 2¢52 (55) 51.2 § 2¢73 (58) 37.2 § 3¢93 (25) p < 00001

Hospital Stay Days 9.6 § 0¢9 (81) 7.8 § 1¢6 (45) 4.9 §0¢88 (54) 7.6 § 1¢26 (58) 5.3 § 1¢25 (22) p < 00001

ER Temperature (C) 37.6 § 0¢16 (81) 38.2 § 0¢18 (45) 37.4 § 0¢13 (55) 38.1 § 0¢14 (58) 37.3 § 0¢22 0.00014

ER Systolic (mm Hg) 115.7 § 2¢47 (83) 121.6 § 3¢44 (45) 131.9 § 3¢21 (55) 118.9 § 2¢87 (57) 111.2 § 3¢44 (25) 0.00030

ER MAPa (mm Hg) 90.5 § 2¢2 (83) 94.3 § 2¢9 (45) 105 § 2¢9 (55) 92.7 § 2¢7 (57) 89 § 3¢2 (25) 0.00069

ER Heart Rate (beats/ min) 104.2 § 2¢5 (83) 110.3 § 2¢7 (45) 97.4 § 2¢7 (55) 109 § 2¢5 (57) 95.8 §4¢2 (25) 0.00094

At ER Altered Mental State 22.9% (19/83) 6.7% (3/45) 3.6% (2/55) 10.3% (6/58) 4% (1/25) 0.0030

Treatment � Antibiotics 88% (73/83) 80% (36/45) 72.7% (40/55) 63.8% (37/58) 44% (11/25) 0.0050

Blood Culture Result 28.4% (23/81) 28.9% (13/45) 14.8% (8/54) 8.9% (5/56) 42% (1/24) 0.0050

At ER qSOFA 1.2 § 0¢09 (83) 0.9 § 0¢12 (45) 0.7 § 0¢08 (55) 0.9 § 0¢1 (58) 1.2 § 0¢18 (25) 0.0094

ER Urea 10.7 § 0¢85 (81) 7.6 § 0¢79 (44) 1.1 § 103 (52) 8.8 § 0¢92 (55) 9.1 § 0.94 (23) 0.014

Treatment - O2 Therapy 41% (34/83) 37.8% (17/45) 29.1% (16/55) 26.3% (15/57) 8% (2/25) 0.019

ER 24H SOFA Score 2.5 § 0¢24 (83) 2.2 § 0¢32 (45) 1.4 § 0¢21 (55) 1.8 § 0¢24 (58) 1.7 § 0¢34 (25) 0.023

ER Creatinine 10.6 § 519 (83) 8.92 § 7¢9 (44) 11.3 § 897 (55) 10.8 § 132 (56) 80.5 § 4¢37 (24) 0.026

ER Diastolic (mm Hg) 70.3 § 1¢6 (81) 68.5 § 2¢3 (45) 75.6 § 1¢9 (55) 73.5 § 1¢8 (57) 67.6 § 1¢8 (25) 0.046

Within 72 h SOFA 1.5 § 0¢24 (83) 1.8 § 0¢41 (45) 0.5 § 0¢15 (55) 1.6 § 0¢36 (58) 1 § 0.31 (25) 0.060

Table 2: Clinical data of patients belonging to endotypes in combined (discovery and validation) analysis. The mean value § standard error is
presented for numerical variables with the total available observations/ patient numbers recorded in brackets. Categorical variables are
presented as percent positive (% total positive/total available observations). P values are derived from Kruskal-Wallis and Chi squared
tests testing for significant differences between endotypes for numerical and categorical values, respectively. Not included are
readmission within 6 months, ER systolic, ER temperature, ICU admission, mortality, ER respiratory rate, ER urea, ER creatinine, and
gender that were not significantly different (p > 0¢05) between groups.

a MAP = Mean arterial pressure
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vivo knockout models,29 STAT3 signaling is known to
induce anti-inflammatory and immune-suppressive
conditions in immune cells.
t 
t 
ICU patients retained severe prognosis endotypes
The presence of these mechanistically and clinically rel-
evant sepsis endotypes was validated in a sub-cohort of
82 critically ill patients (Table 1) enrolled in the COLO-
BILI study (St. Michael’s Hospital, Toronto). Patients
had severe respiratory failure and suspected pulmonary
sepsis on day-1 of ICU admission. This ICU cohort dem-
onstrated higher severity and poorer outcomes cf. the
ER cohorts (Table 1).

The endotype classifier was applied to predict
endotype status (Figure 4a) and Gene-Set Variation
Analysis (GSVA)30 was used to measure the enrich-
ment of the five endotype signatures. This classified
ICU patients into 4 endotypes with most (84%) fit-
ting into the more severe NPS/INF endotypes. The
ADA endotype was not identified, consistent with
the observed and opposite downregulation of
immune processes in later-stage sepsis patients. The
NPS and INF endotypes showed higher severity with
higher 24 h SOFA scores (mean 79; Kruskal-Wallis
p = 0¢033) (Figure 4b; Table 4, S10) and significantly
higher lethality, with the NPS endotype displaying
significantly higher 28-day mortality (45¢7%) cf. the
INF endotype (25¢9%). Intriguingly, none of the 13
patients assigned to the IFN or IHD endotypes died.
www.thelancet.com Vol xx Month xx, 2021
The 7 ICU patients classified as belonging to the 
IFN endotype were all  COVID-19  positive, suggesting
a potential association to viral infections. Neverthe-
less, while all ICU patients demonstrating the IFN 
endotype had COVID-19, this was only 25% of 
COVID patients studied. The remainder of the 
COVID-19 patients fit the general patterns observed 
for other ICU patients, with those that died fitting 
into the more severe and deadly NPS and INF endo-
types. We also assessed the enrichment of our endo-
type signatures in the ICU expression (microarray) 
data of the Davenport et al.14 (SRS1/2) and Scicluna 
et al.15 (Mars1-4) endotypes (Figure S6). This indi-
cated that ICU patients could be re-classified based 
on the distinct mechanisms we uncovered.

The ICU cohort analysis demonstrated that endo-
types persisted during deterioration of patients to 
severe sepsis. To eliminate the possibility that the 
endotypes were sorting patients according to just 
critical illness/severity, we obtained publicly available 
peripheral blood gene expression data (RNA-Seq) 
from patients with non-infectious/sterile myocardial 
infarction (GSE103182).31 The endotype assignmen
of this cohort (93.3% IHD and 6¢7% IFN) did no
show association with the authors’ original compari-

son of interest (i.e., ST-elevated myocardial infarc-
tion/STEMI vs non-ST-elevated myocardial 
infarction/NSTEMI; Chi-squared p = 1¢0). Similarly, 
endotype assignment of an unpublished cohort of 
cancer patients with acute infection (50¢0% INF,
9



Cross Validation (%)

Comparison Gene Sets AUC · Accuracy Sensitivity Specificity

Severitya

High vs. Low Severity Severity Signature 80 72 73

Reduced Severity Signaturec 80 76 70

CR Signature 75 70 68

Reduced CR Signatured 77 73 73

High + Intermediate

vs. Low Severity

Severity Signature 71 72 60

Reduced Severity Signaturec 69 64 63

CR Signature 68 64 62

Reduced CR Signatured 73 67 67

Survived vs Died Mortality 75 68 70

Reduced Mortality Signaturee 67 62 62

CR Signature 60 57 61

Reduced CR Signaturec 62 60 61

Endotypesb

Multinomial Model 40 gene set 96 81 95

NPS vs. all others MLLT1/NSUN7 97 93 91

INF vs. all others SPTA1/GLRX5 95 90 85

IHD vs. all others MAP7/PLCB1 90 85 79

IFN vs. all others PLEKHO1/EPSTI1 86 83 76

ADA vs. all others CENPF/PDIA4 97 87 91

Table 3:Model performance statistics for endotype predictions and outcome measures predicting impending severity. The AUC (· Accuracy),
sensitivity, and specificity of the models, expressed as percent is provided. The performance of the 40 gene signature and the top 5/148
performing gene pairs is shown. For the severity comparisons, comparisons are based on patient groups with SOFA scores measured 24 H
post ER/ICU admission: High (� 5), Intermediate (� 2 and < 5), and Low (< 2). The cellular reprogramming/endotoxin tolerance (CR)
Signature is as per Pena et al.

23

The severity and mortality signatures were further reduced by filtering the genes input to LASSO using a
more stringent fold change cut off (top 25% highest fold changes).

a AUCs obtained in the full (ER + ICU) discovery cohorts.
b AUCs of data-driven endotype gene sets obtained in ER discovery cohort.
c Reduced Severity Signature = TNIP3, DSP, RHAG, G0S2, ITGB4, GPR84, FAM83A, PCOLCE2, CXCL8, SDC2, PRTN3, ELANE
d Reduced CR signature = CD300LF, CPVL, CST3, HK3, MGST1, RAB13, RETN, S100A12
e Reduced Mortality Signature = HGF, DHRS9, SIGLEC1, MS4A4A, OAS2, MMP8, RGL1, SLC51A, OSBP2, IFIT1

Mechanistic Endotypes

Parameter NPH (N = 36) INF (N = 33) IHD (N = 6) IFN (N = 7) P Val

Covid-19 PCR Positivity 16.7% (6/36) 39.4% (13/33) 16.7% (1/6) 100% (7/7) 0.00050

Mortality within 28 Days 45.7% (16/35) 25.9% (7/27) 0% (0/5) 0% (0/6) 0.025

SOFA 24H post ICU admission 7.6 § 0¢9 (34) 8.2 § 0¢78 (32) 3.5 § 1¢34 (6) 3.7 § 1¢49 (7) 0.033

ICU Mortality 38.9% (14/36) 18.2% (6/33) 0% (0/6) 0% (0/5) 0.034

ICU Stay Days 10.4 § 1¢29 (36) 15.2 § 1¢63 (33) 6.8 § 2¢7 (6) 9.7 § 3¢43 (7) 0.050

SOFA 48H post admission 7.5 § 0¢98 (31) 8.4 § 0¢75 (30) 3.5 § 0¢87 (4) 4.1 § 1¢7 (7) 0.079

SOFA at ICU admission 8.4 § 0¢9 (36) 7.9 § 0¢64 (33) 4.2 § 1¢7 (6) 5 § 1.66 (7) 0.093

Table 4: Severity and outcomes of the endotypes in the ICU cohort. The mean value § standard error is presented for numerical variables
with the total available observations/ patient numbers recorded in brackets. Categorical variables are presented as percent positive (%
total positive/total available observations). P values are derived from Kruskal-Wallis and Chi squared tests testing for significant
differences between endotypes for numerical and categorical values, respectively.
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33¢3% IHD, and 16¢7% ADA) did not show any asso-
ciation with cancer type, namely Leukemia or Lym-
phoma (Chi-square p = 0¢89). These results suggest
the endotypes, particularly the NPS and INF endo-
types, did not only reflect severe illness and captured
mechanisms distinct from other conditions.
Discussion
Sepsis is notorious for the clinical heterogeneity
observed in patients, who often demonstrate broad,
non-specific symptomatology in the ER, but can rapidly
deteriorate thereafter. It is generally accepted by clini-
cians that each hour’s delay in initiating appropriate
www.thelancet.com Vol xx Month xx, 2021



Figure 3. Detailed mechanistic characterization of the poor prognosis NPS and INF endotypes. (a) Functional enrichment o
up- and down- regulated DE genes when comparing the NPS endotype to all other endotypes combined and the INF endotype to
all others. (b) Fold changes of genes associated to NPS and INF related processes, which reflect potential mediators and regulators
of the endotype. The NPS endotype is clearly immunosuppressed as indicated by the downregulation of several processes, includ
ing inflammation, interferon processes, and PD-1 signaling among others.
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therapy costs lives, with early potent antibiotics being
applied to dampen underlying infection in the hope
that sepsis progression is hindered.4,32 This has the
downside of contributing to antimicrobial resistance,
since broad-spectrum antibiotics are used even when
there is no observable bacterial infection.5 In this study,
we identified gene expression signatures that can be
assessed in patients as early as 1,2 h after ER admission.
The signatures can be rapidly measured in hospitals
(using PCR, a method that is freely available in most
hospital labs) after routine blood collection from pro-
spective sepsis patients). Future studies will be required
to enable assessment of these signatures on an appro-
priate (likely multiplex qRT-PCR) platform before this
clinical potential is realized. Assessment of these signa-
tures would provide additional input for physicians to
triage patients, in addition to currently used criteria
such as lactate, qSOFA, C-reactive protein, Glasgow
Coma score and various SIRS assessments.

Several single mRNA-based biomarkers have been
proposed to predict sepsis status in patients including
the S100 family of genes, C Reactive Protein (CRP) and
various pro- and anti-inflammatory cytokines (e.g., IL-
10, IL-6, IL-12, TNF)11,33 However, these single bio-
markers have showed nominal prognostic accuracy,
reflecting their inability to capture a holistic view of the
complex immune responses involved in sepsis,34 and
critically have not been validated in very early sepsis.
Thus, they are often correlative rather than predictive.
Accordingly, various groups have exploited whole-blood
gene expression microarrays to identify, in ICU
patients, multi-gene signatures predictive of sepsis; far
fewer studies have correlated this with impending dete-
rioration and severity.6-8,34,35 The Pediatric PERSEVERE
model, identified a biomarker set to estimate the proba-
bility of mortality at the time of admission.35 In adults,
Septicyte Lab36 and the FAIM3:PLAC8 ratio8 discrimi-
nated infected from healthy controls, showing diagnos-
tic accuracy analogous to C-reactive protein,13 but
discrimination from non-infectious inflammation was
less encouraging. All three approaches performed well
at identifying survivors, but, unlike the current study,
poorly at identifying non-survivors and distinct sub-
groups varying in morbidity. Intriguingly, the previ-
ously elucidated CR severe-sepsis signature as well as
DE severity-related and mortality-related gene-sets,
could be assembled into cohesive pathways and protein:
protein interaction networks, unifying their underlying
mechanisms into a single biological program. This fact,
together with the mechanistically driven endotype sig-
natures, underpins the potential value of new diagnos-
tics to guide physician decision-making as well as new
mechanism-based personalized medicine approaches.

Our study indicates that endotypes are independent
determinants of severity/mortality. Endotypes are clini-
cally relevant subgroups of a condition, wherein each
endotype is defined by distinct biological mechanisms.
Numerous clinical studies have failed to identify indi-
vidual biomarkers specific to sepsis,37 likely because the
presence of heterogeneous subgroups was not consid-
ered. Identification of reliable endotypes in sepsis, par-
ticularly in its earliest stages, enabled us to dissect the
heterogeneous molecular responses at play and pro-
vided prognostic and severity signatures. Using the larg-
est prospective, observational, and blinded (to patient
identity and clinical data) RNA-Seq omics studies per-
formed to date on possible sepsis patients at first clinical
presentation, we determined that patients could be
assorted into 5 distinct endotypes, four of which were
retained in ICU patients, cf. previous studies suggesting
only 2 endotypes in the ICU. Our 5 endotypes were
characterized by distinct gene expression profiles and
signatures, novel mechanistic underpinnings, and dif-
ferent but overlapping clinical factors, including sever-
ity. Critically they were identified in an ER discovery
group from three countries/continents and confirmed
in a fourth independent cohort and in ICU patients. We
also predicted our endotypes in patients of the Daven-
port et al.14 (SRS1/2) and Scicluna et al.15 (Mars1-4)
endotypes (Figure S6). Intriguingly, despite the limita-
tions of using microarray data, the highest lethality
groups in the ICU in these studies (SRS1 and Mars1)
aligned best with the NPS and INF endotypes respec-
tively, perhaps reflecting differences in selection of
patient populations.

The NPS and INF endotypes displayed higher esti-
mated neutrophil proportions, cf. our other endotypes,
and clustered to some extent on PCA, but maintained
significant differences including >200 unique DE
genes. These endotypes, detected in ER patients, were
associated with higher subsequent SOFA scores, longer
hospital stays, and a 2¢7-fold increase in positive blood
culture results, among other clinical parameters, and
intriguingly were the most prominent endotypes pre-
served in ICU patients. STAT3 was a connecting node
in the CR/severity/mortality network and intriguingly
the IL6/STAT3 signaling pathway was notably upregu-
lated in the NPS endotype signature. This suggested a
regulatory role of this pathway in sepsis and severe ill-
ness, and potentially an early molecule in immunosup-
pression. The higher neutrophil proportions observed
in these endotypes might also be associated with a ten-
dency towards severe outcomes. Neutrophils have a par-
adoxical role in sepsis, including their potentially-
beneficial role in first-line host defences against
microbes, contrasting with their contribution to organ
dysfunction of over-stimulated or reprogrammed neu-
trophils.38 Indeed, elevated neutrophil to lymphocyte
ratios are associated with poor outcomes in sepsis
patients.39 Conversely, sepsis-induced neutrophil dys-
function is associated with increased risk of nosocomial
and secondary infections, consistent the more severe
symptomology and outcomes of the NPS and INF
endotypes.40
www.thelancet.com Vol xx Month xx, 2021



Figure 4. Endotype classification of ICU patients. (a) Heatmap depicting GSVA enrichment statistics in ICU patients (n = 82) for 
each endotype signature. Each 200-gene endotype was significantly upregulated in the patients classified to the endotype for which 
it defines. (b) Selected clinical symptomology and outcomes for predicted endotypes; Dunn’s Posthoc test indicated by: # p < 0.05 cf. 
IHD; * p < 0¢05 cf. IFN; ^ p < 0¢05 cf. INF. (c) Kaplan-Meier curves describing 28-day mortality.
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The endotypes provide a substantial opportunity
for personalized care and identify different mecha-
nisms that predict or are associated with severe sep-
sis, and thus can be targeted. The clear
immunosuppression associated with the NPS endo-
type would suggest early application of immune
recovery therapies (e.g., interferon gamma therapy,
Granulocyte-Macrophage Colony Stimulating Factor/
GM-CSF, interleukin-7/IL-7).41 The inflammatory
profile of the INF endotype identifies a group of
patients who might improve with targeted anti-
inflammatory therapies. Interestingly, based on clini-
cal features many studies have uncovered subgroups
based on clinical features, termed sub-phenotypes,
which appear to display overlap in the symptomatol-
ogy and outcomes with the NPS and INF endo-
types42-44 The IFN, IHD, and ADA endotypes would
suggest close monitoring without immediate admin-
istration of antibiotics, potentially decreasing the
overuse of antibiotics. Intriguingly, severity/mortality
signatures, endotypes and underlying mechanisms
were clearly conserved between early sepsis in the
ER and ICU patients. Taken together, these data
reveal that early sepsis signatures are applicable to
both a wide variety of ER patients as well as severely
ill patients, at the first day of ICU admission.
www.thelancet.com Vol xx Month xx, 2021
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